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Separation of variables for theDn-type periodic Toda
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Vadim B Kuznetsov†
Department of Applied Mathematical Studies, University of Leeds, Leeds LS2 9JT, UK

Received 14 October 1996

Abstract. We prove separation of variables for the most general (Dn-type) periodic Toda lattice
with a 2× 2 Lax matrix. It is achieved by finding proper normalization for the corresponding
Baker–Akhiezer function. Separation of variables for all other periodic Toda lattices associated
with infinite series of root systems follows by taking appropriate limits.

1. Introduction

Bogoyavlensky [3] introduced periodic Toda lattices corresponding to the root systems of
affine algebras. In this case the integrable potentials in the Hamiltonian

H =
n∑
j=1

p2
j

2
+ V (q) {pj , qk} = δjk (1.1)

for the loop algebrasA(1)n , B(1)n , C(1)n , andD(1)n have the form

VA(1)n = VAn + exp(qn − q1)

VB(1)n = VAn + exp(qn)+ exp(−q1− q2)

VC(1)n = VAn + exp(2qn)+ exp(−2q1)

VD(1)n = VAn + exp(qn−1+ qn)+ exp(−q1− q2)

where

VAn =
n−1∑
j=1

exp(qj − qj+1) .

For the twisted loop algebras the integrable potentials are as follows [21]:

VA(2)2n
= VAn + exp(qn)+ exp(−2q1)

VA(2)2n+1
= VAn + exp(−q1− q2)+ exp(2qn)

VD(2)n+1
= VAn + exp(qn)+ exp(−q1) .

† On leave from: Department of Mathematical and Computational Physics, Institute of Physics, St Petersburg
University, St Petersburg 198904, Russian Federation. E-mail: vadim@amsta.leeds.ac.uk
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Inozemtsev [7] found a generic (Dn-type) periodic Toda lattice with four more
parameters (A, B, C, D) in the potential

V (q) = VAn + exp(−q1− q2)+ exp(qn−1+ qn)+ A

sinh2(q1/2)
+ B

sinh2 q1

+ C

sinh2(qn/2)
+ D

sinh2 qn
(1.2)

which includes all the above potentials as limiting cases. He gave the 2n × 2n Lax
representation and proved Liouville integrability for this system.

Sklyanin [23] found 2×2 Lax representations for all cases (includingBCn) exceptB(1)n ,
D(1)n , A(2)2n+1, and (1.2), introducing a reflection equation which also provided quantization of
those systems. The 2× 2 Lax matrices (L-operators) for the remaining three cases and for
Inozemtsev’s extension (1.2) were found in [10, 11, 20]. See also [14] where Inozemtsev’s
case was interpreted as theAn-type open Toda lattice interacting with two Lagrange tops
(one on each end of the lattice).

The periodic Toda lattice (ofA(1)n type) was separated in [6]. In [22] it was treated
within theR-matrix method which allowed separation of its quantum counterpart. Partial
results on the separation of variables for other Toda lattices are scattered in several places
[11, 20, 14], essentially repeating the basic technique of [22] for the case of reflection
equation algebra introduced in [23]. For a detailed algebro-geometrical treatment of many
of these Toda lattices we refer the reader to [1].

In the present paper we prove separation of variables for the generic potential (1.2)
with the 2× 2 Lax matrixL(u). It is achieved by finding proper normalization for the
corresponding Baker–Akhiezer (BA) functionf (u)

L(u) f (u) = v f (u) (
f (u) = (f1(u), f2(u))

t
)
.

We recall that (usually) the separation variables are obtained as poles of the BA function
(cf the review [25]). The standard normalizationf1(u) = 1 (or f2(u) = 1) which was valid,
for instance, for theA(1)n case [22] does not work here, giving too many poles which are
not in involution with respect to the Poisson bracket. The reason is extra symmetries of the
Lax matrix. To obey symmetry and reduce the number of poles to the number of degrees of
freedom, one has to find a specific normalizationα(u) = (α1(u), α2(u)) of the BA vector:

α1(u) f1(u)+ α2(u) f2(u) = 1 .

The structure of the paper is as follows. In section 2 we give an overview of the method
of separation of variables, applying it in section 3 to the integrable system in question. In
section 4 there are some concluding remarks.

2. The method

The method of separation of variables plays an important role in studying Liouville
integrable systems.

Definition 1. A Liouville integrable system possesses a Lax matrix if there is a matrixL(u)

dependent on a ‘spectral parameter’u ∈ C such that its characteristic polynomial obeys two
conditions:
(i) Poisson involutivity:{det(L(u)− v · 11), det(L(ũ)− ṽ · 11)} = 0, ∀ u, ũ, v, ṽ ∈ C;
(ii) det(L(u)− v · 11) generates all integrals of motionHi .
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Definition 2. By separation of variables(SoV) in classical mechanics we mean the existence
of a canonical transformationM : (x, p) 7→ (u, v), M : Hi(x, p) 7→ Hi(u, v) such that
Hi(u, v) are in the separated form

8(ui, vi;H1, . . . , Hn) ≡ det(L(ui)− vi · 11) = 0 i = 1, . . . , n .

The above definition corresponds precisely to the standard definition of SoV in the
Hamilton–Jacobi equation [2].

We would like to note here that we have connected our definition of SoV with the Lax
representation and with the associated spectral curve of the Lax matrixL(u), so it might be
not unique (if it exists) in the case where a chosen integrable system has, for instance, two
or more inequivalent Lax representations.

One of the main questions in the theory is: how does one constructively define those
new separation variables(uj , vj ) sitting on the spectral curve of anL-matrix for a given
integrable system?

For a very long time a great deal of attention has been given to so-called coordinate
separation of variables or to separation in the configuration space (see, for instance,
[8, 24, 12, 13, 4, 25] and references therein). In this case the separation variablesuj
are functions of thexi alone:

uj = uj (x1, . . . , xn) . (2.1)

Such kinds of integrable systems admitting a coordinate (spatial) separation of variables have
been studied in detail, although at the same time it was understood that by no means every
Liouville integrable system can be separated through a transition (2.1) to new ‘coordinates’
ui . The class of admissable transformations should be enlarged for a generic integrable
system up to a general canonical transformation

uj = uj (x1, . . . , xn, p1, . . . , pn) vj = vj (x1, . . . , xn, p1, . . . , pn) . (2.2)

The very existence of SoV according to the above definition is still unproved in general,
to author’s knowledge; although there are powerful methods which have been applied to
many families of integrable systems (see the recent review [25]) showing that separability
is one of the most important features of integrability, and that hopefully the latter always
implies the former. The method of SoV in its modern formulation can be found in [25];
see also [16–19, 15]. Here we describe its main steps very briefly.

The first difficulty is: how does one find the separation variablesuj? There is a general
answer to this question, which has been inspired by the whole experience of the inverse
scattering method, and it is a very simple one:

Answer. Theuj are poles of the Baker–Akhiezer function which is properly normalized.

There is, however, a slight further problem of choosing the correct normalization for the BA
function; the problem which was not completely solved by powerful and successful method
of inverse scattering. So, a general theory connecting the symmetry of the Lax matrix to
proper normalization vector of the BA function is still incomplete. However, supposing
that one somehow knows the correct normalization, then one could proceed further and put
the above general recipe into the formulae (cf [25]).

The linear problem for the BA functionf (u) is of the form

L(u) f (u) = v(u) f (u) (det(L(u)− v · 11) = 0) . (2.3)

The normalizationα(u) of the eigenvectorsf (u) has to be fixed
N∑
i=1

αi(u) fi(u) = 1 (f (u) ≡ (f1(u), . . . , fN(u))
t ) . (2.4)
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Let L(u) be a meromorphic function inu thenf (u) is also meromorphic inu. Let us look
at its (f (u)’s) polesuj :

f
(j)

i = res
u=uj

fi(u) .

Then from equations (2.3), (2.4) we have

L(uj ) f
(j) = vj f (j) vj ≡ v(uj )

N∑
i=1

αi(uj ) f
(j)

i = 0 .
(2.5)

Equations (2.5) areN+1 linear homogeneous equations for the separation variablesu = uj
andv = vj which are bounded by definition to the spectral curve (cf equation (2.3)). These
equations have to be compartible. The compatibility of the system (2.5) is equivalent to the
condition

rank

(
α(u)

L(u)− v · 11
)
= N − 1 (2.6)

whereα is thought of as a row vector. Finally, the condition (2.6) can be rewritten as the
following vector equation:

α · (L(u)− v · 11)∧ = 0 (2.7)

where the wedge denotes the classical adjoint matrix (matrix of cofactors).

Proposition 1.Excludingv, one can derive from equations (2.7) the equation foru in the
form

B(u) = det


α

α · L(u)
...

α · LN−1(u)

 = 0 . (2.8)

Proof. Whenu = uj we have the equations (cf equations (2.5))

L(u) f = v(u) f α f = 0 . (2.9)

Hence

αLk f = 0 k = 0, 1, 2, . . . .

Then equation (2.8) follows becausef is a non-zero vector. �

Also, from equations (2.7) we can obtain formulae forv in the form

v = A(u)
whereA(u) are some rational functions of the entries ofL(u) (cf [15]).

What is left is just to verify (somehow) the canonical brackets between the whole set
of separation variables, namely between the zerosuj of B(u) and their conjugate variables
vj ≡ v(uj ) = A(uj ). To do this final calculation we need information about the Poisson
brackets between entries of the Lax matrixL(u), which is usually provided by corresponding
r-matrix (standard or dynamical).

In order to perform a SoV, say, in a strong sense, one also has to try to obtain an explicit
representation for the corresponding generating functionF(u|x) of the separating canonical
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transformM from the set(xj , pj ) to the set(uj , vj ). Actually, to find the generating function
F(u|x) one has to solve the system of non-linear equations of the form

α(uj )

(
L(uj )+ ∂F

∂uj
· 11
)∧∣∣∣∣

pk=∂F/∂xk
= 0 j = 1, . . . , n .

In the quantum case the functionF(u|x) has a quantum counterpart: the kernelMh̄(u|x)
of the separating integral transformMh̄, so that

Mh̄(u|x) ∼ exp

(
i

h̄
F (u|x)

)
h̄→ 0 .

For some integrable systems such special functions of many variables (F andMh̄) can be
obtained in very explicit terms (cf [25, 16, 17, 18]). We remark here that the other generating
function has traditionally been associated with constructions of the method of separation
of variables in the Hamilton–Jacobi equation, namely the action functionS(H |u) given in
terms of separation variables,uj , and integrals of motion,Hj . Our choice of arguments of
the generating function is justified by the quantum case whereF(y|x) has a direct quantum
analogue, while the action functionS(H |u) does not have such a nice quantum counterpart
at all.

Very often the above prescription of SoV should be read ‘in the opposite direction’
(because one does not usually know the separating normalization in advance). Sometimes,
regardless of the choice of the vectorα, the Baker–Akhiezer functionf (u) has exactly the
required number of poles in involution. Sometimes, and this is very important,f (u) has too
many poles and they arenot mutually in involution, showing that there are some constraints
between them. In the latter case, one should find a proper (and quite unique) normalization
vectorα(u) so that all the extra poles off (u) are fixed asconstants. The prescription then
makes us search for a way to resolve possible constraints on poles of the Baker–Akhiezer
function by using the freedom to choose its normalization. In this paper we show that
this is the case in theDn-type periodic Toda lattice and give the correct normalization for
correspondingf (u), thereby producing a SoV for this system, which has not been solved
before by this method.

If we make a similarity transformation for theL-matrix

L̃(u) = V (u)L(u) V −1(u)

with a non-degenerate matrixV (u) then the linear problem

L(u) f (u) = v(u) f (u) α · f = 1 (2.10)

turns into

L̃(u) f̃ (u) = v(u) f̃ (u) α0 · f̃ = 1

where

f̃ (u) = V (u) f (u) α(u) = α0(u) V (u) . (2.11)

This shows that the freedom to choose the normalization vectorα is equivalent to the
freedom to make similarity transformations to the initial Lax representation.

Let us putN = 2, so that we assume from now on that we have a 2×2 Lax representation
for our integrable system. In this case the equations of SoV (2.6) have the form

rank

 α1(u) α2(u)

L11(u)− v L12(u)

L21(u) L22(u)− v

 = 1
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from which we conclude that

α1L12 = α2 (L11− v)
α1 (L22− v) = α2L21

}
⇔

B(u) = α2

1L12− α1α2(L11− L22)− α2
2L21 = 0

v = A(u) = L11− α1

α2
L12 = L22− α2

α1
L21 .

Suppose we have found a non-degenerate matrixV (u) such that the Lax matrix̃L(u) =
V (u)L(u)V −1(u) ends up in SoV with the standard normalization vectorα0 = (1, 0).
That would imply separability for the matrixL(u) with the normalization vectorα (cf
equation (2.11))

α = α0 · V = (V11(u), V12(u)) .

3. The separation

Let us recall first the construction of the 2× 2 Lax matrix for theDn-type periodic Toda
lattice with four extra parameters (Inozemtsev’s case) [10, 11, 20, 14].

Given the rational classical 4× 4 r-matrix of the form

r(u) = κ

u


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


one considers two algebras: the Sklyanin quadratic algebra (S)

{L(1)(u), L(2)(v)} = [r(u− v), L(1)(u) L(2)(v)]
and the reflection equation algebra (RE)

{L(1)(u), L(2)(v)} = [r(u− v), L(1)(u) L(2)(v)] + L(1)(u) r(u+ v)L(2)(v)
−L(2)(v) r(u+ v)L(1)(u) .

These two algebras appeared in the quantum inverse scattering method. Their
representations play an important role in the classification and studies of classical integrable
systems (see, for instance, [5, 21, 23, 25] and references therein). Here the superscripted
indices(1) and (2) mean standard tensoring of the 2× 2 matrixL(u) with the 2× 2 unit
matrix 11: L(2)(u) = 11⊗ L(u), L(1)(u) = L(u)⊗ 11.

The following 2× 2 L-operators

L1(u) =


u2x1+ u [i(x2

1 − 1) p1+ c1x1

+c2] + c1c2
u (x2

1 − 1)

u (u2+ (x2
1 − 1) p2

1

− 2ip1 (c1x1+ c2)− c2
1)

u2x1− u [i(x2
1 − 1) p1+ c1x1

+ c2] + c1c2


and

L2(u) =


−u2x2+ u [i(x2

2 − 1) p2+ c3x2

+ c4] − c3c4

u (u2+ (x2
2 − 1) p2

2

− 2ip2 (c3x2+ c4)− c2
3)

u (x2
2 − 1)

−u2x2− u [i(x2
2 − 1) p2+ c3x2

+ c4] − c3c4


satisfy the RE algebra withκ = i. Here the(xj , pj ) are canonical Darboux variables, i.e.
the Poisson brackets are{pj , xk} = δjk. TheseL-operators were found in [10, 11] (see also
[20, 14]). They generate theDn-type periodic Toda lattice having four additional (singular)



Separation of variables for theDn-type periodic Toda lattice 2133

potential terms with the parametersc1, c2, c3, c4. Namely, consider the following Lax
matrix:

T (u) = L3(u) · · · · · Ln(u) · L1(u) · L−1
n (−u) · · · · · L−1

3 (−u) · L2(u) (3.1)

where theL-operatorsL3, . . . , Ln satisfy the(S) algebra withκ = i and have the form:

Lk(u) =
(

0 −x−1
k

xk u+ ipkxk

)
k = 3, . . . , n .

The Lax matrix thus constructed describes an integrable system with the following
Hamiltonian:

H1 =
n∑
k=3

(xkpk)
2+ p2

1 (x
2
1 − 1)+ p2

2 (x
2
2 − 1)− 2

n−1∑
k=3

xk

xk+1

+ 2
x2

x3
+ 2x1xn − 2ip1 (c1x1+ c2)− 2ip2 (c3x2+ c4) . (3.2)

This Hamiltonian turns into that for Inozemtsev’s Toda lattice (cf equation (1.2)) under the
following change of variables:x1 = coshq1, x2 = coshq2, xj = exp(qj ), j = 3, . . . , n,
and obvious gauge-type canonical transformation for two particles (with the variables
(x1, p1) and(x2, p2)) to get rid of terms linear inp1, p2 in (3.2).

Our problem is to separate variables in this system and restore the Lax matrixT (u),
equation (3.1), in terms of (new) separation variables. This is perfomed in the following
three propositions.

The spectral curve has the following form:

det(T (u)− v · 11) = v2− v[(−1)nu2n+2+ (−1)nH1 u
2n +H2 u

2n−2

+ · · · +Hn u2− 2c1c2c3c4
]+ 4∏

i=k
(u2− c2

k) = 0 . (3.3)

Proposition 2.Let

V (u) =
( 1− x2 u+ c3− ip2 (1− x2)

0
1

1− x2

)
. (3.4)

Then it is easy to verify thatV (u) obeys the (S) algebra withκ = i and, moreover, it
converts the matrixL2(u) into the triangular form

L̃2(u) ≡ V (−u) · L2(u) · V −1(u) =
(
(u− c3)(u+ c4) 0

−u 1+ x2

1− x2
(u+ c3)(u− c4)

)
.

Proof. This is a simple and straightforward algebraic calculation. The second part of the
statement is crucial for the following procedure of separation of variables and is absolutely
non-trivial since we apply analmostsimilarity transformation to the boundary matrixL2(u)

to put it into the triangular form (note the changed sign of the spectral parameteru). �
Proposition 3.Consider the representation of the (RE) algebra of the following form:

T̃ (u) = V (u) · L3(u) · · · · · Ln(u) · L1(u) · L−1
n (−u) · · · · · L−1

3 (−u) · V −1(−u)

=
(
Ã(u) B̃(u)

C̃(u) D̃(u)

)
. (3.5)
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Then the matrix̂T (u) which is similar to theT (u) can be represented as follows:

T̂ (u) ≡ V (u) · T (u) · V −1(u) = T̃ (u) · L̃2(u) . (3.6)

Hence

tr T (u) = (u− c3)(u+ c4) Ã(u)+ (u+ c3)(u− c4) D̃(u)− u 1+ x2

1− x2
B̃(u)

with

detT̃ (u) = (u2− c2
1)(u

2− c2
2) detL̃2(u) = (u2− c2

3)(u
2− c2

4)

detT (u) =
4∏
k=1

(u2− c2
k) .

If we choosen zerosuk of the polynomialB̃(u) asn separation variables:

B̃(±uk) = 0 λ±k = D̃(±uk) k = 1, . . . , n (3.7)

then they satisfy the relations

{uj , uk} = 0

{uk, λ±k } = ±i λ±k
λ+k λ

−
k = (u2

k − c2
1) (u

2
k − c2

2)

{λ±j , λ±k } = {λ±j , λ∓k } = {λ±j , uk} = 0 j 6= k .
Moreover, from their definition it follows that they satisfy the equalities (k = 1, . . . , n)

tr T (uk) = (uk − c3)(uk + c4) λ
−
k + (uk + c3)(uk − c4) λ

+
k (3.8)

(the separation equations).

Proof. The matrixT̃ (u) satisfies the involution

T̃ (−u) = [detT̃ (u)
] · T̃ −1(u) = σ2 T̃

t (u) σ2

or, in component-wise form,

Ã(−u) = D̃(u) B̃(−u) = −B̃(u) C̃(−u) = −C̃(u) .
Moreover, its polynomial inu entries have the degrees

degT̃ (u) =
(

2n 2n+ 1

2n− 1 2n

)
.

The matrixT̃ (u) obeys the RE algebra of Poisson brackets according to the proposition 2
from [23] becauseLj(u), j = 3, . . . , n, andV (u) obey the S algebra brackets. Using our
proposition 2 we establish the decomposition (3.6) for the matrixT̂ (u) which is similar to the
Lax matrix T (u). The rest of the formulae are obvious. The polynomialB̃(u) has exactly
n non-trivial zerosuk, k = 1, . . . , n (doubled by the obvious±-symmetry). The relatedλ±k
variables are defined according to (3.7). These new variablesuk, λ

±
k satisfy the separation

equations (3.8) by their definition. The calculation of all the Poisson brackets between the
separation variablesuk, λ

±
k is a standard procedure nowadays which was originally invented

in [22]. Let us recall, for instance, how one calculates the brackets betweenuk and λ+k .
From the RE algebra for̃T (u) we have

−i{B̃(u), D̃(v)} = D̃(u)B̃(v)− D̃(v)B̃(u)
u− v + D̃(−u)B̃(v)+ D̃(v)B̃(u)

u+ v .
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Combining it with the equation

0= {B̃(uk), D̃(v)} = {B̃(u), D̃(v)}
∣∣
u=uk + B̃

′(uk){uk, D̃(v)}
we obtain

{uk, λ+k } =
−i

B̃ ′(uk)

(
λ+k

uk − v +
λ−k

uk + v
)
B̃(v)

∣∣∣∣
v=uk
= i λ+k . �

Proposition 4.The interpolation problem to restore the matrix̃T (u) in terms of new
(separation) variablesuk, λ

±
k has the following solution:

B̃(u) = (−1)nu
n∏
k=1

(u2− u2
k)

D̃(u) = (−1)nc1c2

n∏
k=1

u2− u2
k

u2
k

+
n∑
k=1

[
u(u+ uk)

2u2
k

λ+k +
u(u− uk)

2u2
k

λ−k

]∏
j 6=k

u2− u2
j

u2
k − u2

j

Ã(u) = D̃(−u) C̃(u) = Ã(u)D̃(u)− (u2− c2
1)(u

2− c2
2)

B̃(u)
.

Proof. The formula forB̃(u) is obvious. The polynomial̃D(u) of degree 2n is restored in
terms of the separation variables by interpolation with 2n+ 1 data of the form

D̃(±uk) = λ±k D̃(0) = c1c2 . �
Now we can derive, in principle, the formulae connecting old and new variables. For

instance, noting that̃D(u) has the asymptotics

D̃(u) = (−1)n

1− x2
u2n + · · · u→∞

we find that

1

1− x2
= c1c2∏n

k=1 u
2
k

+ (−1)n
n∑
k=1

λ+k + λ−k
2u2

k

∏
j 6=k(u

2
k − u2

j )
.

We can express some other combinations of the initial variables in terms of new (separation)
variables, comparing the coefficients of the entries ofT̃ (u) in both representations.
Considering the trT (u), we could also obtain the expressions for the integrals of motion
H1, . . . , Hn in terms of the separation variables.

Corollary 1. The separating normalization vector for theDn-type periodic Toda lattice with
the Hamiltonian (3.2) and with the Lax matrix (3.1) has the form

α = (1− x2, u+ c3− ip2 (1− x2)) .

The separation variablesuk and v±k ≡ (uk ± c3)(uk ∓ c4) λ
±
k , k = 1, . . . , n, are sitting on

the spectral curve (3.3) of the Lax matrixT (u), equation (3.1):

(v±k )
2− v±k tr T (uk)+ detT (uk) = 0

i.e.

v+k + v−k = tr T (uk) v+k v
−
k = detT (uk) .

They have the following Poisson brackets

{uk, v±k } = ±i v±k .
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Remark 1.The (obvious) alternative choice of the separating normalization vector follows
if we convert the matrixL1(u) instead of the matrixL2(u) (cf proposition 2) to triangular
form. This would correspond to interchanging two edge particles in the lattice.

It would be interesting to construct (explicitly) the generating functionF(u|x) of this
separating canonical transform.

If we introduce the canonically conjugate variablesπj

{πj , uk} = δjk
then we can put

v±k = [detT (uk)]
1
2 exp(∓i πk)

and obtain the separation equations in the form

2 [detT (uk)]
1
2 cos(πk) = tr T (uk) .

Hence, the action variablesSk(H1, . . . , Hn) have the form

Sk(H1, . . . , Hn) =
∮
αk

arccos

(
tr T (u)

2[detT (u)]
1
2

)
du k = 1, . . . , n

whereαk are theα-cycles on the Riemannian surface of
√

tr2 T (u)− 4 detT (u).
One can obtain the quasiclassical spectrumHk(N1, . . . , Nn) of the integrals of motion

H1, . . . , Hn (cf [9]) by inverting the integrals (Bohr–Sommerfeld quantization)

Sk(H1, . . . , Hn) = hNk k = 1, . . . , n

where theNk are the quantum numbersNk = 1, 2, 3, . . . . Obtaining the true discrete
spectrum of the integrals of the quantumDn-type periodic Toda lattice is the problem of
quantum separation of variables.

4. Concluding remarks

We refer the reader to the review [25] (cf also [15]) where it was demonstrated that the
simplest choice of the normalization vectorα, when one of the components of the Baker–
Akhiezer functionf (u) (for instance the first one) is equal to 1, i.e. when

α = (1, 0, . . . ,0) (4.1)

provides a SoV for many integrable systems ofAn type. If a chosen integrable system
cannot be separated with this simplest normalization, and this usually means that its Lax
matrix has some extra symmetries/involutions (i.e. is of theBCn or Dn type or obeys an
elliptic r-matrix), then the main problem is to find the properα. For the time being there
is no theory to give a general prescription for finding the correct normalization vectorα
in those cases. However, one practical rule can be suggested. Usually, if one looks at the
poles of the Baker–Akhiezer function with the simplest normalization (4.1), one finds that
there are too many poles and they do not respect the symmetry presenting in the problem.
Then the rule is the following: take an ansatz forα(u) with some dependence onu and
with some indeterminates in it, derive equations for those indeterminates demanding that
(a) f (u) with such a normalization has the correct number of moving poles respecting
involutions of the spectral curve and (b) all extra poles are equal to constants. Then solve
the equations. . . .

In this paper we applied this approach to theDn-type periodic Toda lattice with four
additional singular terms in the potential. This system cannot be separated with the simplest
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choice of the normalization vectorα (4.1), so we have derived the correct normalizationα
producing the SoV. For some of the root systems the separating normalization vector is a
constant vector (cf theBCn case in [11, 20, 14]). For the genericDn case the separating
α(u) depends on the spectral parameteru and on the phase variables, so it is dynamical. We
think that it is an important feature of this kind of problems (those with extra involutions),
that the separating choice ofα is not completely arbitrary, as it was for some of theAn-type
systems, but is quite unique and dynamical.

The specific situation with theDn-type periodic Toda lattice, i.e. that the correctα is u-
dependent and dynamical, is surely connected with the fact that we use dynamical boundary
L1,2-matrices in constructing the corresponding Lax matrixT (u) (3.1) for this case.
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