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Abstract. We prove separation of variables for the most genépattype) periodic Toda lattice

with a 2x 2 Lax matrix. It is achieved by finding proper normalization for the corresponding
Baker—Akhiezer function. Separation of variables for all other periodic Toda lattices associated
with infinite series of root systems follows by taking appropriate limits.

1. Introduction

Bogoyavlensky [3] introduced periodic Toda lattices corresponding to the root systems of
affine algebras. In this case the integrable potentials in the Hamiltonian

n 2
pA
H = Zl 7] + Vi(g) {pj» ax} = djx (1.1)
j=

for the loop algebrastV, BY, ¢V, andDY have the form

VAi,l) = V‘A,7 + eXp(C[n - ‘Z1)
VB,(,D = V_An + eXFx‘]n) + exp(—lh - f]z)

Vew = Va, + exp(2g,) + exp(—2q1)

VD'(}) = VA,, + eXP(gn—1 + qu) + EXP(—q1 — q2)

where
n—1
Va, =) explg; — gj41) -
j=1
For the twisted loop algebras the integrable potentials are as follows [21]:

Va2 = Va, + expga) + exp(—2q1)

Vo = Va, +exp(—q1— q2) + exp2g,)

2
2n+1
Vpa = Va, +€Xp(gn) + exp—q1) .
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University, St Petersburg 198904, Russian Federation. E-mail: vadim@amsta.leeds.ac.uk

0305-4470/97/062127+12$19.5@C) 1997 IOP Publishing Ltd 2127



2128 V B Kuznetsov

Inozemtsev [7] found a genericD(-type) periodic Toda lattice with four more
parameters4, B, C, D) in the potential

A B

V(g) = Va, + exp(—q1 — q2) + exp(gn—1 + g») + SN @r/2) + s a,

R
sintf(g,/2)  sintf g,

which includes all the above potentials as limiting cases. He gave ithe 2n Lax
representation and proved Liouville integrability for this system.
Sklyanin [23] found 2« 2 Lax representations for all cases (includifg,) exceptB3V

DY, A(Zi)ﬂ, and (1.2), introducing a reflection equation which also provided quantization of
those systems. The»22 Lax matrices L-operators) for the remaining three cases and for
Inozemtsev's extension (1.2) were found in [10, 11, 20]. See also [14] where Inozemtsev’'s
case was interpreted as thk -type open Toda lattice interacting with two Lagrange tops
(one on each end of the lattice).

The periodic Toda lattice (oA™Y type) was separated in [6]. In [22] it was treated
within the R-matrix method which allowed separation of its quantum counterpart. Partial
results on the separation of variables for other Toda lattices are scattered in several places
[11, 20, 14], essentially repeating the basic technique of [22] for the case of reflection
equation algebra introduced in [23]. For a detailed algebro-geometrical treatment of many
of these Toda lattices we refer the reader to [1].

In the present paper we prove separation of variables for the generic potential (1.2)
with the 2x 2 Lax matrix L(u). It is achieved by finding proper normalization for the
corresponding Baker—Akhiezer (BA) functiofiu)

L) f(u) =v f(u) (f @) = (frw), f2))").

We recall that (usually) the separation variables are obtained as poles of the BA function
(cf the review [25]). The standard normalizatignu) = 1 (or f>(u) = 1) which was valid,

for instance, for thedY) case [22] does not work here, giving too many poles which are
not in involution with respect to the Poisson bracket. The reason is extra symmetries of the
Lax matrix. To obey symmetry and reduce the number of poles to the number of degrees of
freedom, one has to find a specific normalizati®o() = (a1 (u), a2(u)) of the BA vector:

ar(u) fi(u) + azx(u) fo(u) =1.

The structure of the paper is as follows. In section 2 we give an overview of the method
of separation of variables, applying it in section 3 to the integrable system in question. In
section 4 there are some concluding remarks.

(1.2)

2. The method

The method of separation of variables plays an important role in studying Liouville
integrable systems.

Definition 1. A Liouville integrable system possesses a Lax matrix if there is a mA{x
dependent on a ‘spectral paramete’ C such that its characteristic polynomial obeys two
conditions:

(i) Poisson involutivity: {det(L(u) —v - 1), detL (@) —v-1)} =0, Vu,i,v,ve€C,

(i) det(L(#) — v - 1) generates all integrals of motiaf; .
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Definition 2. By separation of variable§SoV) in classical mechanics we mean the existence
of a canonical transformatio™ : (x, p) — (u,v), M . H;(x, p) — H;(u,v) such that
H;(u, v) are in the separated form

O(u;, v, Hy, ..., H) =det(L(u;)) —v; - 1) =0 i=1...,n.

The above definition corresponds precisely to the standard definition of SoV in the
Hamilton—Jacobi equation [2].

We would like to note here that we have connected our definition of SoV with the Lax
representation and with the associated spectral curve of the Lax midtrjx so it might be
not unique (if it exists) in the case where a chosen integrable system has, for instance, two
or more inequivalent Lax representations.

One of the main questions in the theory is: how does one constructively define those
new separation variablesu;, v;) sitting on the spectral curve of alrmatrix for a given
integrable system?

For a very long time a great deal of attention has been given to so-called coordinate
separation of variables or to separation in the configuration space (see, for instance,
[8, 24, 12, 13, 4, 25] and references therein). In this case the separation variables
are functions of the; alone:

uj:uj(xl,...,xn). (21)

Such kinds of integrable systems admitting a coordinate (spatial) separation of variables have
been studied in detail, although at the same time it was understood that by no means every
Liouville integrable system can be separated through a transition (2.1) to new ‘coordinates’
u;. The class of admissable transformations should be enlarged for a generic integrable
system up to a general canonical transformation

i =uj(X1, ..., %X, P1s -5 Pn) Vi = 0j(X1, ..., X, P1, e, Do) - (2.2)

The very existence of SoV according to the above definition is still unproved in general,
to author’s knowledge; although there are powerful methods which have been applied to
many families of integrable systems (see the recent review [25]) showing that separability
is one of the most important features of integrability, and that hopefully the latter always
implies the former. The method of SoV in its modern formulation can be found in [25];
see also [16-19, 15]. Here we describe its main steps very briefly.

The first difficulty is: how does one find the separation variabig® There is a general
answer to this question, which has been inspired by the whole experience of the inverse
scattering method, and it is a very simple one:

Answer. The; are poles of the Baker—Akhiezer function which is properly normalized.

There is, however, a slight further problem of choosing the correct normalization for the BA
function; the problem which was not completely solved by powerful and successful method
of inverse scattering. So, a general theory connecting the symmetry of the Lax matrix to
proper normalization vector of the BA function is still incomplete. However, supposing
that one somehow knows the correct normalization, then one could proceed further and put
the above general recipe into the formulae (cf [25]).

The linear problem for the BA functioif (u) is of the form

L(u) f(u) =v) f(u) (det(L(u) —v-1)=0). (2.3)
The normalizatiomx(u) of the eigenvectory («) has to be fixed

N
Zai(u) fiw) =1 (f@) = (@), ..., fn@)"). (2.4)

i=1
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Let L(u) be a meromorphic function in then f (u) is also meromorphic im. Let us look
at its (f (u)’s) polesuy;:

£ = res fiu).
Then from equations (2.3), (2.4) we have

L(uj) f(j) =v; f(j) v = v(u‘,-)
N .

Z(X,‘(uj) fi(j) = 0

i=1

Equations (2.5) ar&/ + 1 linear homogeneous equations for the separation variables;

andv = v; which are bounded by definition to the spectral curve (cf equation (2.3)). These
equations have to be compartible. The compatibility of the system (2.5) is equivalent to the
condition

(2.5)

rank( o(w) ) =N-1 (2.6)
Lu)—v-1

wherea is thought of as a row vector. Finally, the condition (2.6) can be rewritten as the
following vector equation:

o - (Lw)—v-1H*=0 2.7)
where the wedge denotes the classical adjoint matrix (matrix of cofactors).

Proposition 1.Excluding v, one can derive from equations (2.7) the equationufon the
form

(e
o - Lu)
B(u) = det ) =0. (2.8)
o LN 1)

Proof. Whenu = u; we have the equations (cf equations (2.5))

L) f=v)f af=0. (2.9)
Hence

alfkf=0 k=0,1,2,....
Then equation (2.8) follows becaugeis a non-zero vector. O

Also, from equations (2.7) we can obtain formulae #oin the form
v=A(u)

where A(u) are some rational functions of the entriesIaf:) (cf [15]).

What is left is just to verify (somehow) the canonical brackets between the whole set
of separation variables, namely between the zefosf B(x) and their conjugate variables
v; = v(u;) = A(u;). To do this final calculation we need information about the Poisson
brackets between entries of the Lax mattif), which is usually provided by corresponding
r-matrix (standard or dynamical).

In order to perform a SoV, say, in a strong sense, one also has to try to obtain an explicit
representation for the corresponding generating funcli@nx) of the separating canonical
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transformM from the set(x;, p;) to the sefu;, v;). Actually, to find the generating function
F(u|x) one has to solve the system of non-linear equations of the form

oF A
aj) | L)+ —-1
duj p=0F/dxi
In the quantum case the functidn(z|x) has a quantum counterpart: the kerndl; (u|x)
of the separating integral transforif;, so that

Mp(ulx) ~ exp(}ll;F(mx)) h— 0.

For some integrable systems such special functions of many variablaad My) can be
obtained in very explicit terms (cf [25, 16, 17, 18]). We remark here that the other generating
function has traditionally been associated with constructions of the method of separation
of variables in the Hamilton—Jacobi equation, namely the action fun&ti@hu) given in

terms of separation variables;, and integrals of motion;. Our choice of arguments of

the generating function is justified by the quantum case whéséx) has a direct quantum
analogue, while the action functicf( H |u) does not have such a nice quantum counterpart
at all.

Very often the above prescription of SoV should be read ‘in the opposite direction’
(because one does not usually know the separating normalization in advance). Sometimes,
regardless of the choice of the vectey the Baker—Akhiezer functionf () has exactly the
required number of poles in involution. Sometimes, and this is very imporfanj, has too
many poles and they aret mutually in involution, showing that there are some constraints
between them. In the latter case, one should find a proper (and quite unique) normalization
vectora(u) so that all the extra poles of(u) are fixed asonstants The prescription then
makes us search for a way to resolve possible constraints on poles of the Baker—Akhiezer
function by using the freedom to choose its normalization. In this paper we show that
this is the case in th®,-type periodic Toda lattice and give the correct normalization for
correspondingf (u), thereby producing a SoV for this system, which has not been solved
before by this method.

If we make a similarity transformation for thie-matrix

L(u) = V@) L) V)
with a non-degenerate matriX(z) then the linear problem

L(u) f(u) =v(u) f(u) a-f=1 (2.10)
turns into

Law fw =vw) f@) — oo-f=1
where

fy=vew f@  a@) =aw V@), (2.11)

This shows that the freedom to choose the normalization veetdg equivalent to the
freedom to make similarity transformations to the initial Lax representation.

Let us putN = 2, so that we assume from now on that we havex@ Rax representation
for our integrable system. In this case the equations of SoV (2.6) have the form

a(u) ap(u)
rank Lqii(u) —v Li>(u) =1
Loa(u)  Loo(u) —v
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from which we conclude that

— 2 27
@1 L1p = o (L1g — v) B(u) = ajLip — onap(Lir — L2g) —a5L1=0
a1 (Lop —v) = ap Lo

o1 o2
v=AW)=Li1— —Lip=1Lxx— — Lo.
(0% o

Suppose we have found a non-degenerate mat(ix) such that the Lax matrii(u) =
V(wu)L(u)V~1(u) ends up in SoV with the standard normalization veatgy = (1, 0).
That would imply separability for the matriX.(z) with the normalization vectorx (cf
equation (2.11))

a=og-V=~"Vuw), Viow)).

3. The separation

Let us recall first the construction of thex22 Lax matrix for theD,-type periodic Toda
lattice with four extra parameters (Inozemtsev’s case) [10, 11, 20, 14].
Given the rational classical 4 4 r-matrix of the form

1 00O

()KOO
r(u) = —

qul
00

o O -
= O O

one considers two algebras: the Sklyanin quadratic algebra (S)
(LY@, L2} = [r@ —v), LY@ L? )]

and the reflection equation algebra (RE)

{LP@), LPW)} = [r@ —v), LY @) LP@)] + LY @) r(u +v) L? (v)

—LPW)rw+v) LY®w).

These two algebras appeared in the quantum inverse scattering method. Their
representations play an important role in the classification and studies of classical integrable
systems (see, for instance, [5, 21, 23, 25] and references therein). Here the superscripted
indices (1) and (2) mean standard tensoring of thex2 matrix L(«) with the 2x 2 unit
matrix 1: L@w) =1 L), LPw) = L) ® 1.
The following 2x 2 L-operators
u%x1 4+ u [i(xf -1 p1+cxa

u(x2—-1
+c2] + c1c2 !
La(u) = 2 (12 2 2 2
u”+ (x;—1 pg uxy—uli(xf—1) p1+cn
—2ip1 (c1x1 + ¢2) — ¢2) + 2] + c1c2
and
—u’xs+u [i(x% — 1 pr+ c3x2 u (u? + (x% -1 p%
+c4] — c3ca —2ipy (c3x2 + ca) — ¢3)
Lo(u) =

—ulx,—u [i(x% — 1) p2+c3x2

+ca] — c3cq
satisfy the RE algebra with = i. Here the(x;, p;) are canonical Darboux variables, i.e.
the Poisson brackets afp;, x;} = §;x. TheseL-operators were found in [10, 11] (see also
[20, 14]). They generate thB,-type periodic Toda lattice having four additional (singular)

u(x3 — 1)
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potential terms with the parametets, c», c3, c4. Namely, consider the following Lax
matrix:

T(u) = La(u)- -+ - Ly(u) - Ly(u) - L;*(—u) - -+ - L3*(—u) - Lo(u) (3.1)

where theL-operatorsLs, ..., L, satisfy the(S) algebra withk =i and have the form:

Lk(u):<0 —x,:l ) k=3, ...,n.
Xp U+ ipgx

The Lax matrix thus constructed describes an integrable system with the following
Hamiltonian:

n n—1
X,
Hi=Y (up®+pi i —D+ps -1 -2 —
=3 =3 *k+1
X
+2 ;2 + 2x1x, — 2ip1 (c1x1 + €2) — 2ip2 (c3xz + c4) . (3.2)
3

This Hamiltonian turns into that for Inozemtsev’s Toda lattice (cf equation (1.2)) under the
following change of variablesx; = coshgy, xo = coshgs, x; = explg;), j =3,...,n,

and obvious gauge-type canonical transformation for two particles (with the variables
(x1, p1) and(xz, p2)) to get rid of terms linear irp1, p2 in (3.2).

Our problem is to separate variables in this system and restore the Lax m&tnix
equation (3.1), in terms of (new) separation variables. This is perfomed in the following
three propositions.

The spectral curve has the following form:

det(T (u) — v - 1) = v* — v[(=D)"u®*? + (—1)"Hyu® + Hpu® 2

4
+ .-+ H,u®— 26‘16‘26‘364] + H(u2 — c,f) =0. (3.3)
i=k

Proposition 2.Let

1—x2 u+cz—ip2(1—xp)
V) = ( . 1 ) . (3.4)

1-— X2
Then it is easy to verify thaV (u) obeys the (S) algebra with = i and, moreover, it
converts the matrix.o(«) into the triangular form

~ ( —c3)(u +ca) 0
Lo(u) =V (—u) - Lo(u) - V_l(u) = ( 1+ xp ) .
—u 1 x (u + c3)(u — ca)

Proof. This is a simple and straightforward algebraic calculation. The second part of the
statement is crucial for the following procedure of separation of variables and is absolutely
non-trivial since we apply aalmostsimilarity transformation to the boundary matiix (i)
to put it into the triangular form (note the changed sign of the spectral paramjeter (1

Proposition 3.Consider the representation of the (RE) algebra of the following form:
T) =V@) - L) - - LyG) - L) - L)+ - - L3 (—=u) - VN (—u)

B (Z(n) E(u)) @5)
“\Cw) Dw)/’ '
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Then the matriﬁ(u) which is similar to theT (1) can be represented as follows:

Tw)=Vw) -Tw) -V 2w =Tw - L) . (3.6)
Hence
~ ~ 1 + X2 ~
tr7(u)=(u—c3)(u+ca) A(u) + (u + c3)(u —cg) D(u) —u 1 x B(u)
with
detT (u) = u? — A W? — c3) detLo(u) = ? — c3)(u? — 2)

4
det?(u) = [ Jw® - cd).
k=1

If we choosen zerosu, of the polynomialﬁ(u) asn separation variables:

B(fu;) =0 AE = D(2uy) k=1,...,n (3.7)
then they satisfy the relations
{uj,ur} =0

{ug, MY = £i A

Mg = wf = cf) (uf — )

D=0 =00 w) =0 j#k.
Moreover, from their definition it follows that they satisfy the equalities<(1, ..., n)

tr 7 (u) = (ug — c3)(ug + ca) Ay + (ug + c3)(ux — ca) A (3.8)
(the separation equations).
Proof. The matrixf(u) satisfies the involution

T(—u) = [detT )] - T w) = 02T () o2
or, in component-wise form,

A(—u) = D(u) B(—u) = —Bu) C(—u)=—Cu).
Moreover, its polynomial int entries have the degrees

2n 2n + 1)

n—-1 2n '
The matrix T (u) obeys the RE algebra of Poisson brackets according to the proposition 2
from [23] because.;(u), j = 3,...,n, andV (u) obey the S algebra brackets. Using our
proposition 2 we establish the decomposition (3.6) for the mdt(ix which is similar to the
Lax matrix T'(u). The rest of the formulae are obvious. The polynon#i&) has exactly
n non-trivial zerosuy, k = 1, ..., n (doubled by the obvious--symmetry). The reIateﬁl,f
variables are defined according to (3.7). These new varia@les,f satisfy the separation
equations (3.8) by their definition. The calculation of all the Poisson brackets between the
separation variables,, A,f is a standard procedure nowadays which was originally invented

in [22]. Let us recall, for instance, how one calculates the brackets betweand A
From the RE algebra fof (1) we have

Du)B(v) — D(v)B(u) N D(—u)B(v) + D(v)Bu)
u—v u+v '

degf(u) = (

—i{B(u), D(v)} =
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Combining it with the equation

0= {B(uo), D)} = {Bw), DW)}|,_, + B o) {ux, D))

U=u

i + -\
2} = (A" 4 )B(v)

E/(uk) Uy — U Uy +v

we obtain

=i O

V=uj

Proposition 4.The interpolation problem to restore the matfdXu) in terms of new
(separation) variables;, A,f has the following solution:

Bw) = (—"u [ [? - ud)
k=1

~ nu? — y? " Tuu + uy) u( —uy) u? — y?
Dw) = (- [~ k+Z[ M o xk}]_[ 1
el Ui p 2u;; 2u; ) E
Aw)D(u) — (u? — A u? - c3)

B(u) '
Proof. The formula forB(«) is obvious. The polynomiaﬁ(u) of degree 2 is restored in
terms of the separation variables by interpolation with+21 data of the form

D(tup) = AF D(0) = cic5. O

Now we can derive, in principle, the formulae connecting old and new variables. For
instance, noting thab (1) has the asymptotics

Aw) = D(—u) Cu) =

- —1)"
D(u) = =1 u? + U —> 00
1-— X2
we find that
1 c1C2 1 )»2— + )»,:
= — + (=" .
1-x2 [liza “1% ; 2’4% ]—Ij;ék(u% - “,2)

We can express some other combinations of the initial variables in terms of new (separation)
variables, comparing the coefficients of the entries Taft) in both representations.
Considering the tF (u), we could also obtain the expressions for the integrals of motion
Hi, ..., H, in terms of the separation variables.

Corollary 1. The separating normalization vector for the-type periodic Toda lattice with
the Hamiltonian (3.2) and with the Lax matrix (3.1) has the form

a=1—x u+cz3—ip2(1—x2).

The separation variables, and v,f = (up + c3)(ux F ca) A,(i, k=1,...,n, are sitting on
the spectral curve (3.3) of the Lax matf(«), equation (3.1):

()2 — vE tr T (uy) + detT () = 0

vl v =trT (u) vl vy = detT (uy) .
They have the following Poisson brackets

+ .+
{ug, v} =Fi v, .
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Remark 1.The (obvious) alternative choice of the separating normalization vector follows
if we convert the matrix_,(«) instead of the matrix..(u) (cf proposition 2) to triangular
form. This would correspond to interchanging two edge particles in the lattice.

It would be interesting to construct (explicitly) the generating functfo@|x) of this
separating canonical transform.
If we introduce the canonically conjugate variablgs

{7, ur} = dji
then we can put
= [detT (u)]> exp(Fi )
and obtain the separation equations in the form
2 [detT (up)]? cosimy) = tr T (uy) .
Hence, the action variable& (H,, ..., H,) have the form

Su(Hi. ... H,,)—f s( UTw) >du k=1 . ..
o[detT ()]}

whereq; are thea-cycles on the Riemannian surface\gzifr2 T (u) — 4detT (u).
One can obtain the quasiclassical spectripiNy, ..., N,) of the integrals of motion
Hi, ..., H, (cf[9]) by inverting the integrals (Bohr—Sommerfeld quantization)

Sk(Hl,...,H,,)ZhNk k:l,...,n

where theN, are the quantum numberg, = 1,2, 3,... . Obtaining the true discrete
spectrum of the integrals of the quantum-type periodic Toda lattice is the problem of
guantum separation of variables.

4. Concluding remarks

We refer the reader to the review [25] (cf also [15]) where it was demonstrated that the
simplest choice of the normalization vectar when one of the components of the Baker—
Akhiezer functionf (1) (for instance the first one) is equal to 1, i.e. when

a=(10,...,0) 4.1)

provides a SoV for many integrable systems.4f type. If a chosen integrable system
cannot be separated with this simplest normalization, and this usually means that its Lax
matrix has some extra symmetries/involutions (i.e. is of fitg or D, type or obeys an
elliptic r-matrix), then the main problem is to find the proper For the time being there
is no theory to give a general prescription for finding the correct normalization vector
in those cases. However, one practical rule can be suggested. Usually, if one looks at the
poles of the Baker—Akhiezer function with the simplest normalization (4.1), one finds that
there are too many poles and they do not respect the symmetry presenting in the problem.
Then the rule is the following: take an ansatz tef:) with some dependence anand
with some indeterminates in it, derive equations for those indeterminates demanding that
(@) f(u) with such a normalization has the correct number of moving poles respecting
involutions of the spectral curve and (b) all extra poles are equal to constants. Then solve
the equations.. .

In this paper we applied this approach to thg-type periodic Toda lattice with four
additional singular terms in the potential. This system cannot be separated with the simplest



Separation of variables for th®,-type periodic Toda lattice 2137

choice of the normalization vectaet (4.1), so we have derived the correct normalization
producing the SoV. For some of the root systems the separating normalization vector is a
constant vector (cf thésC, case in [11, 20, 14]). For the generz, case the separating
a(u) depends on the spectral paramet@nd on the phase variables, so it is dynamical. We
think that it is an important feature of this kind of problems (those with extra involutions),
that the separating choice afis not completely arbitrary, as it was for some of thg-type
systems, but is quite unique and dynamical.

The specific situation with th®,-type periodic Toda lattice, i.e. that the corrects u-
dependent and dynamical, is surely connected with the fact that we use dynamical boundary
L, ,-matrices in constructing the corresponding Lax maffix) (3.1) for this case.
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